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In February/March 2012 I spent a month in South Africa at the invitation of a South African 
University. I spent the time delivering a series of seminars and working with university staff 
and doctoral and masters students, mainly on issues of theory and methodology. At one point 
staff members asked me for ideas on creating access programmes for African South African 
students, who were overwhelmingly overrepresented among those failing their courses in 
mathematics education. What kind of advance preparation would these students need if they 
were to become better prepared? My reply was to wonder whether they (the staff) were 
asking the right question. Had it occurred to them to reflect on what it might be in the 
curriculum, including their teaching and, particularly their assessment practices that might be 
responsible for the students’ failures? Apparently, it had not. This was not an unexpected 
response. The curriculum at any level of schooling—including Higher Education—is generally 
a given and stands as that against which students are to be measured. If this measurement 
registers a failure, then there must be a deficit in terms of student readiness or ability. Now, 
if their courses had been in humanities or arts subject, then my question might have been 
taken more seriously. After all, the content of a history curriculum, for example, might have 
been expected to encounter political challenges, but mathematics seems widely to be taken 
as perhaps difficult, but generally non-contentious and necessary and mathematics education 
surely concerns the transmission and acquisition of its essential skills. So, who is going to argue 
with that? Well, this is a rather simplistic view of pedagogy: here is Pádraig Hogan in a more 
reflexive mood: 
 

… as a teacher I might quite rightly decry the determined resistance of my students as 
obstructions of my efforts to teach them maths. But I might also fail to notice that my own 
understanding of mathematics – as essentially a matter of mastering procedures and rules 
– might be a crucial contributory factor. Allied to this might be a failure on my part to 
appreciate the importance of involving my students in active ways in their own learning. I 
might also fail to see that this would mean cultivating practices of learning that embody 
practical forms of justice, and the progressive sharing by my students of more of the 
responsibility for their learning. Even if I do appreciate this, I might not see the further 
practical consequences. I might not realise that teaching and learning, far from being 
essentially a matter of transmission and reception, constitute a joint event, experienced 
from a range of different perspectives by those involved. I might not notice a necessity to 
develop new kinds of learning relationships that disclose more imaginatively the topic 
being studied and that combine this with manifestations of fair play in the learning 
experiences themselves. 

(Hogan, 2010, pp. 90-91) 
 

Hogan is questioning the traditional teacher-student relationship and the 
transmission/reception interpretation of education and suggesting that this might, at 
least in part, be responsible for student resistance to reception. ‘Reception’ seems, 
like transmission, to be associated with messaging by radio or other media. 
Acquisition, on the other hand is, after all is what learning is and I prefer this term to 
the dominant emic word, ‘learning’, provisional on its decoupling from ‘transmission’. 
It is ‘transmission’, not ‘acquisition’, that locates control with the teacher and denies 
it to the student. 
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Hogan’s challenge is, of course, consistent with the arguments of liberal 
educators, including Dewey, Piaget and Schön and popular in contemporary, Western 
educational theory, but not universally so. Kanako Kusanagi (2022) presents evidence 
to this effect in her book, in which she also presents her ethnographically inspired 
research on the import of the Japanese teacher development programme, ‘lesson 
study’ to Java, Indonesia. ‘Lesson Study’ in its current form is fundamentally liberal in 
its design, but this ran counter to the social relations and cultural practices that 
prevailed in the Javanese school in which Kusanagi’s study was based. The result of 
this antagonism was that, whilst the sternly bureaucratic organisation of the school 
ensured that the special lesson study lessons were organised as dictated by the 
programme, this had no effect on the everyday lessons in the school, so there was no 
impact on teacher development. It might be claimed that a liberal programme had been 
introduced in a decidedly anti-liberal way. 

 
*** 

The social relations in Kusanagi’s study school were constituted, officially, by a rigid 
hierarchy maintained by bureaucratically distributed responsibilities. Those 
responsibilities that were not simply administrative involved presenting the curriculum 
to the students—transmission. Acquisition was essentially the students’ responsibility. 
The teacher’s official identity was as a civil servant and not a pedagogue.  Relations 
outside of the official hierarchy were flatter. Kusanagi describes a familial culture in 
which individuals bore responsibility to support the teacher collective, though not to 
support the students, which, in effect, was optional. This division of labour: teachers/ 
transmission versus students/acquisition combined with an official hierarchical 
bureaucracy and an unofficial, flat familial structure is clearly an inhospitable 
environment for addressing ethical concerns regarding the curriculum insofar as these 
concerns relate to the relations between teachers and students, pending fundamental 
changes in the sociocultural regulation of schooling in Java. There are, however, 
features of schooling in Indonesia and more widely that are not under the direct control 
of the teachers. Most obviously, there is the matter of educational materials, including 
textbooks, that are produced outside of the school. 

Mathematics textbooks come under ethical scrutiny when it is found that they 
represent socially different categories of students differently or when, for example, 
they code mathematical ability in terms of social distinctions. I (for example, Dowling, 
1998) identified both of these features in the school mathematics scheme (SMP 11-
161) that was widely used in England and Wales in the 1980s and early 1990s. In 
Dowling & Burke (2012) we introduced the scheme in Figure 1. School students fall 
naturally into social categories, including—socioeconomic status (ses); gender; race; 
(dis)ability. These categories are sometimes (not always) visually apparent and where 
a category is visually apparent, the respective images transmit the signified category 
either by its presence or its absence so that students are able to see how their 
category is represented or that it is absent. This is an ethical issue. For example, 
femininity was notable by its invisibility in school mathematics texts in the UK until 
comparatively recently and represented in stereotype, even in the 1980s when there 
was also evidence of tokenism. The same was true of racial diversity and diversity in 
terms of ablebodiedness. 

 
1 Published by Cambridge University Press. 
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A more subtle form of differentiation is apparent on deploying the relational space 
in Figure 2. I refer to my analysis of the school mathematics scheme, SMP 11-16. From 
the third year of secondary schooling, the scheme is organised in terms of ‘ability’. My 
analysis demonstrated that the scheme recognised ‘ability’ in terms of ses. This was 
apparent in the images and settings that were represented in each of the ‘ability’ tracks. 
The four categories in Figure 2 can be described as follows. The esoteric domain 
consists of text that is strongly institutionalised in terms of expression (ie mathematical 
symbols, terms and diagrams) and content (mathematical concepts). It is only in this 
domain that mathematical principles and rules can be fully realised. In contrast, the 
public domain consists of non-mathematical expression and content and so includes 
everyday settings, such as shopping and other settings drawn from a diverse range of 
non-mathematical contexts. These settings, however, are organised according to 
esoteric domain principles, so that, for example, shopping in these texts is not 
shopping as practiced by shoppers (see Lave et al, 1984), but recontextualised 
shopping; it is, in effect, a fictionalised shopping. The other two domains are hybrids. 
The descriptive domain employs mathematical expressions to signify non-
mathematical objects, relations and practices—this is the domain of mathematical 
modelling. The expressive domain signifies mathematical objects and relations using 
non-mathematical signfiers—this is the domain of metaphors such as a fraction is a 
piece of cake or an equation is a balance; metaphoric signifiers always detach from 
their signifieds if pushed too far, which, in the case of expressive domain metaphors 
leads to confusion rather than enlightenment (Dowling. 2007). 

 
Figure 1. Strategies of Representation (From Dowling & Burke, 2012) 

 
 Orientation to Pattern 

Expression consonance dissonance 

Connotative (tacit) invisibility tokenism 

Denotative (explicit) stereotype interrogation 

 
 
Figure 2. Domains of Action (from Dowling 2009) 

  
 Content 

Expression I+ I- 

I+ esoteric domain descriptive domain 

I- expressive domain public domain 
I stands for strength of institutionalisation. 

 
Analysing the tracked books from SMP 11-16, I found that the lowest track text—

designed for ‘low ability’/low ses students—remained almost entirely in the public 
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domain. The highest track text—designed for ‘high ability’/high ses students—by 
contrast, moved between the public and esoteric domains with substantial textual time 
spent in the esoteric. This structure became progressively more pronounced in the 
moves between the first and last books in each track. The effect of these trajectories 
was to provide ‘high ability’/ses students a career into esoteric mathematics and to 
trap the ‘low ability’/ses students in fictional, quotidian discourse. The mathematics 
education of the day translated socioeconomic status into ability. Was this ethical? 

But there is another twist! The esoteric domain of school mathematics is 
essentially a self-referential collection that has no substantial references either 
horizontally, to other school subjects (which, if they recruit mathematical 
expression/content always recontextualise it), or vertically, to mathematics in Higher 
Education (which departs almost entirely from school mathematics). Thus, both low 
ses and high ses students are inducted into fictional discourses, though the latter do 
have the advantage of the acquisition of symbolic capital (Bourdieu, 2021) that might 
get them into university, where, basically, they’ll have to start over! 

 
*** 

This is how the purpose of studying mathematics at school (KS3 & 4, for ages 12-16) 
is presented in the National Curriculum: 

Mathematics is a creative and highly inter-connected discipline that has been developed 
over centuries, providing the solution to some of history’s most intriguing problems. It is 
essential to everyday life, critical to science, technology and engineering, and necessary 
for financial literacy and most forms of employment. A high-quality mathematics education 
therefore provides a foundation for understanding the world, the ability to reason 
mathematically, an appreciation of the beauty and power of mathematics, and a sense of 
enjoyment and curiosity about the subject.2 

Taken as a whole, this statement exhibits what I (Dowling, 1998) have referred to as 
the ‘myth of participation’, claiming that mathematics is essential, critical, necessary 
for participation in diverse activities that, together range over most areas of our lives: 
without mathematics, it seems, we are incapable of living adequately. Well, it is true 
that almost everything can be described in mathematical terms, but that is not the 
same as saying that we need school mathematics in order to participate in these 
activities. I have referred to the publication by Jean Lave et al that provides examples 
of everyday activities that are performed imaginatively, creatively, but that seem to 
owe nothing to school mathematics. Some advocates of so-called ‘ethnomathematics’ 
describe in mathematical terms practices in a range of settings in non-industrial 
societies demonstrating, they claim, that these societies have actually ‘discovered’ 
mathematics (see Dowling, 1998). Well, an article in the Observer newspaper recently3 
reported that bees (the insects) are capable of counting; as far as I am aware, no bee 
has ever passed a school mathematics test. Not only that, but the growth of the celery 
plant follows the Fibonacci sequence without the benefit of a mathematics education. 
These are flippant examples, of course, but in her study of Atlantic African cultures, in 

 
2 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/239058/S
ECONDARY_national_curriculum_-_Mathematics.pdf 
3 https://www.theguardian.com/environment/2022/jul/16/bees-are-really-highly-intelligent-the-insect-iq-
tests-causing-a-buzz-among-scientists 
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which qualitative value is not always automatically realisable numerically, the 
anthropologist, Jane Guyer (2004) presents evidence of societies in which the 
‘calculation’ of value must recognise culturally specific obligations and rights that from 
a Western point of view, but not from a local perspective, are likely be (mis)interpreted 
as corruption. The hegemony of the mathematical computation of value is not 
universal, though Western political domination pretty much is. Guyer concludes that: 
 

Scalar representations of judgmental concepts—of the goods at issue (quality), of the 
services they bring (utility, benefit) and the costs their acquisition incurs (risk)—have to be 
reformulated to be expressed numerically. Some reductions of scalar value to number are 
historical events, the results of political proclamation. Others are continuously 
institutionalized by dramatic performances, such as competitions, which in turn ripple out 
their effects into new scalar formations: for rules of qualification as well as excellence, for 
judges, for arenas, for training institutions, for materials, for expertise in the materials, and 
so on. Formal competitions are relentless generators of new scales of value by drawing 
participants and audience into a scalar logic, a monetary logic, and a mode of binding the 
two. Gradations are assigned a numerical referent, which affects prize money, stud fees, 
consultancy fees, access to other resources such as book contracts and foreign markets, 
and so on. Even when the numerical translation of the ordinal scale is implausible—beauty 
from 1 to 10? two 5's of beauty as good as one10?—the capacity of numbers to express 
other values is now a hegemonic idea in the modern economy, enforced by law and 
inculcated by competitions and professional organizations. After initial struggles over the 
terms for each new domain (orchids, aerobics, for example), the equation of qualitative 
and monetary scales eventually erases the constructions and disjunctures that have been 
overridden. It is only by a massive discounting of the "tournament of value" that we can 
retain the notion of the theoretical dominance of supply and demand in "markets" as the 
main representation of the operations of value in modern economies. 

(Guyer, 2004; p. 52) 
 
Is this a presentation of ‘financial literacy’ and so the ‘necessary’ mathematics 
education that is to provide access to it as ethical practices? Well, I can hear the 
counter to this, “This is how the world works here and now and we have a duty to 
prepare our children to participate in it.” Do we? Presumably, then, it’s OK for the 
Japanese Yakuza to apprentice their novices into their own particular forms of violence. 

The alternative, of course, is to introduce a critical dimension to our mathematics 
education and there are many well-meaning mathematics educators who take 
precisely this line. Unfortunately, this is more easily attempted than achieved as 
illustrated by our (Dowling & Burke, 2012) discussion above of the relational space in 
Figure 1 illustrates. In Dowling (2010) I include a brief discussion of an account of a 
lesson by Eric Gutstein (2002). The lesson involved the use of graphing calculators to 
explore the statistical concept, ‘expected value’ by looking at data on police traffic 
stops, classified by the race of the driver, in the US State of Illinois. The students 
concluded that, if the stops were random, then the number of stops of Latino drivers 
should be consistent with the proportion of drivers who were Latinos. They were not: 
Latino drivers were substantially over-represented by a factor of about 4. Does this 
demonstrate that the Illinois Police were acting in a racist way? Well, its’s not 
altogether clear, because random traffic stops are illegal in the US, being a breach of 
Fourth Amendment rights that maintain that the police must be able to demonstrate 
‘probable cause’ of an offence having been committed. So, the traffic stops should 
not have been random. It may have been, however, that a correlation between race 
and relative poverty meant that Latinos were more likely than Caucasians to be driving 
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elderly and poorly maintained vehicles having visible defects, or even defective 
speedometers, and that this was responsible for the excess traffic stops. 

Interestingly, one Illinois Police Department used a similar analysis of their traffic 
stops, by ethnicity and gender to argue that the stops of different categories were in 
proportion to their respective representation in the community and so: 

 
Wilmette police officers [were] engaging in bias free traffic enforcement’ 

Carpenter, 2004. P. 66) 
 

The stops by the Wilmette Police were presumably, also not random/illegal, which 
raises the question of possible quota traffic stops! 

The problem with Gutstein’s lesson was that it was a mathematics lesson, 
prioritising a mathematics curriculum theme, and not an exploration of social justice. 
Had it been the latter, then the mathematical modelling should also have come under 
scrutiny, not just, what are random numbers, but is their use to generate metrics 
appropriate in this context? This illustrates the general difficulty with public domain 
teaching: it’s not about ‘the real world’, it’s about the mathematised world. Whether 
the setting is shopping or social injustice, is the parading of the mathematised world 
in the guise of the real world ethical? 

This does not happen only in mathematics education. Health is a regular theme 
in the news media. Here’s a headline from The Guardian: ‘Extra glass of wine a day 
'will shorten your life by 30 minutes' (The Guardian. 2018.04.13) such claims are 
ludicrous, untested and indeed untestable as the lives used to make such a claim must 
of necessity already have ended and ‘your life’ has not yet ended and so its length is 
unknown; it’s a prediction that is essentially probabilistic and grounded on retrospective 
data. Probability is calculated on the basis of equally likely events, so each face of a 
cubic die is equally likely to land face-up when the die is tossed: a probability of 1/6. 
Now, human response to alcohol is a seriously complex issue and the specific 
outcomes of alcohol consumption by 6 (or even 600) individuals are likely all to be 
different. This study may be informative: 

 
Alcohol consumption level and alcohol use disorder (AUD) diagnosis are moderately 
heritable traits. We conduct genome-wide association studies of these traits using 
longitudinal Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) scores and 
AUD diagnoses in a multi-ancestry Million Veteran Program sample (N = 274,424). We 
identify 18 genome-wide significant loci: 5 associated with both traits, 8 associated with 
AUDIT-C only, and 5 associated with AUD diagnosis only. Polygenic Risk Scores (PRS) for 
both traits are associated with alcohol-related disorders in two genetic correlation reflects 
the overlap between the traits, genetic correlations for 188 non-alcohol-related traits differ 
significantly for the two traits, as do the phenotypes associated with the traits' PRS. Cell 
type group partitioning heritability enrichment analyses also differentiate the two traits. We 
conclude that, although heavy drinking is a key risk factor for AUD, it is not a sufficient cause 
of the disorder. 

Kranzler, H.R. et al. 2019 
 

The esoteric domain language and, in general, the argument of this article will exclude 
many, if not most readers, who will need to rely on the headline; certainly, a school 
mathematics education won’t help them. How should they respond? When researchers 
speak with each other in the same discipline, they speak in their specialist, esoteric 
domain discourse. When they speak in public, they of necessity speak in public domain 
discourse. School mathematics won’t be of much use, because, when it addresses 
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non-mathematical settings, it also speaks in the public domain. Is this democratic, is it 
ethical? 

There is a particular issue with the teaching of probability in school mathematics 
that is discussed in Dowling, 19954. This chapter presents an analysis of those chapters 
of SMP 11-16 that deal with statistics and probability. It seems that, until comparatively 
late in the school mathematics curriculum at the time, probability was covered 
exclusively by public domain discourse and, in particular, the concept ‘equally likely 
events’ was not mentioned at all. The omission of this fundamental concept is possibly 
the reason why so many of the students whom I taught when I was a secondary school 
mathematics teacher found probability to be an incomprehensible theme. There was 
lots of talk about dice and coins and spinners and I remember one question about a fox 
whose chance of catching its prey (hen, duck, …?) depended on the amount of cloud, 
which varied probabilistically! Utter nonsense, of course, but I’m still baffled by 
announcements by weather forecasts that put a probability on the likelihood of rain. 
Figure 3 shows the forecast for today in my current location. The probabilities are in 
the line of percentages between the wind speeds and the rain icons. 

 
Figure 3. Kyoto weather 2nd – 3rd November 2022. (source BBC website5) 
 

 
 

So, at 17:00, it’s partially cloudy, 20o Celsius, with a northerly breeze of 5 Kph and a 
probability of rain at 2% or 0.02. What does this probability mean? Possibilities are, 
perhaps, that 2% of the area of Kyoto will experience rain, or it will rain 2% of the time, 
or that in 2% of situations when meteorological conditions are as they are now, there 
will be rain (how much, when, where, precisely)? The only clarity occurs after 23:00 
tonight, when a probability of 0% indicates no chance of rain at all. I’ll make a point of 
writing to the meteorological office and asking them just what these probabilities mean, 
but you can see my confusion, I hope. Strictly speaking, this is descriptive domain text 
(from a mathematics point of view), but that doesn’t make it any clearer. 

Returning to the headline about shortening your life by 30 minutes, as I’ve 
indicated, this cannot be a message to be taken literally by individuals: the online 
etymology dictionary gives the origin of the word ‘statistics’ as ‘science dealing with data 

 
4 The relevant chapter of this work was edited out of Dowling, 1998, for reasons of word length. 
5 https://www.bbc.com/weather/1857910 
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about the condition of a state or community’ from 17706, which is consistent with Michel 
Foucault’s (2007) discussion that identifies statistics with the management of populations, not 
individual life choices. So, is the headline ethical? My answer is that it is not, in fact, it’s in 
effect a lie! 

 
*** 

I have been very critical of the school mathematics scheme SMP 11-16 here and in 
previous publications. These criticisms were made from my position as a sociologist 
and educator. As someone having an interest in mathematics, however, my response 
to these textbooks, well, the higher track anyway, was far more appreciative. The 
attempt to base the discourse on set theory was consistent with ‘modern mathematics’ 
and some of the activities were highly imaginative. I found the initial version of the 
Advanced Level books, available just as I left university in 1972, to be quite exciting, 
starting off with a chapter on algebraic structure. I wondered why my head of 
department had handed the A-Level teaching over to me (my degree was in Physics). 
It became clear when these books were scrapped after only a few years and replaced 
with a new series with the more interesting stuff, including algebraic structure, 
abandoned or pushed into the Further Mathematics series. Apparently, few of the 
mathematics teachers at the time were familiar with this more advanced mathematics 
and many refused to teach it: the transmission model of pedagogy requires the teacher 
to be in control of the content as well as the students! 

The SMP 11-16 course is now rather old. The school books currently used are 
driven by State-led emphasis on examination performance and SATs rather than on 
the acquisition of mathematical knowledge per se. The current books, published by 
Pearson under the heading Edexcel Mathematics, weaken the grip of the esoteric 
domain as constructed in the earlier books by diluting the strictly mathematical 
content—perhaps the mathematical expression less so—and constituting an amalgam 
with another discourse. In Dowling, 2010, I referred to the second discourse as 
‘pedagogic theory’, but the Edexcel books prioritise, not educational theory as such, 
but assessment in public examinations, which dominate the amalgam, so that school 
mathematics has become less a matter of “an appreciation of the beauty and power of 
mathematics, and a sense of enjoyment and curiosity about the subject”, as the 
National Curriculum maintains, and more a training for passing GCSE examinations. 
Thus, for example, “The mathematics of trigonometry is ignored but rather [presented as] a 
set of procedures […] provided to answer exam questions” (Jeremy Burke, personal 
communication). The ‘exam-style questions’ that are included in the text even go so far as to 
provide a key to the number of marks to be awarded for each successfully completed part of 
the question, one example involving calculating the length of the ‘opposite side’, x cm, of a 
right-angled triangle (‘NOT accurately drawn’) is to be credited with ‘3 marks’, comprising ‘1 
mark for writing an equation using the correct ratio, 1 mark for rearranging and 1 mark for the 
correct value of x’. Since the hypotenuse is 32 cm and the relevant angle is 60o, I would simply 
state the answer as 16√3, which is precise, though in surd, not decimal form, so I would then 
have to render as approximation, 27.7 cm (using a remembered approximation for √3 (1.732)). 
I would presumably receive 1 mark for the answer, but miss out on the other 2 marks, even 
though my response showed evidence of a knowledge of Pythagoras’ theorem and surds as 

 
6 https://www.etymonline.com/word/statistics 
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well as trigonometry and was a correct answer, which I was then required to approximate as 
a decimal. The marking of the ‘exam-style’ questions, here and throughout the Edexcel books 
seems detached from mathematical knowledge, reacting only to bureaucratically prescribed 
procedures. 

So much for the esoteric domain in Edexcel Mathematics. The public domain retains the 
absurdity apparent in SMP 11-16: here are two examples about ratio. 

 
Real It takes 3 typists 5 hours to type a report 
How long would it take 7 typists 
Give your answer to the nearest minute 
 

Well, are typists still employed to type reports? In what form are the draft reports handed to 
the typists? When they were so employed, were they paid by the hour or by the number of 
words/pages? In what sense is this a ‘real’ problem? 

 
8 boys and 12 girls go to swimming lessons. 
In one lesson, the mean number of lengths swum by the boys is 4.5 and the 
mean number of lengths swum by the girls is 2. 
Work out the mean number of lengths swum by all the children in that 
lesson. 
 

This item includes a ‘hint’: 
 

Hint Draw a bar to represent all the children. 
Split the bar into sections that show the numbers of boys and girls. 
Work out how many lengths the boys swam in total and how many  
lengths the girls swam in total. Work out how many lengths the 
children swam altogether. 
 

The strategy suggested in the ‘hint’ seems to me to be rather more troublesome than 
solving the task mentally (the answer is 3). Is this ‘problem’ one that is likely to be encountered 
anywhere, by anyone? Here’s a question from both the Edexcel 2018 GCSE Examination (first 
Foundation and first Higher papers) that is arguably even more absurd and that, in a sense, 
justifies the absurd nature of the textbook examples, the curriculum being exam-led: 

 
In a village 
 

the number of houses and the number of flats are in the ratio 7:4 
the number of flats and the number of bungalows are in the ratio 8:5 
 

There are 50 bungalows in the village 
How many houses are there in the village? 
 

The numbers of houses, flats, and bungalows are already known, if the village is in existence 
and are, in any event, unlikely to be presented as ratios like this. Here, the answer, in case 
you were struggling (or insensible with laughing at the absurdity of the task), is 140. 

 
I can’t resist just one more, again from the Edexcel 2018 GCSE exam (this time from the 

second Foundation paper): 
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Here is a list of ingredients for making 30 biscuits 
 

Ingredients for 30 biscuits 
 
225 g butter 
110 g caster sugar 
275 g plain flour 
75 g chocolate chips 
 

Lucas has the following ingredients. 
 
900 g butter 
1000 g caster sugar 
1000 g plain flour 
225 g chocolate chips 
 
What is the greatest number of biscuits Lucas can make? 
You must show your workings. 
 

Again, not much working needed here: the chocolate chips are going to run out first, so 3 
batches or 90 biscuits. But does cooking work like this? Well, not in my kitchen, where, for 
example, ingredient quantities are rarely, if ever, so sensitive, and as a Type 2 diabetes sufferer, 
I don’t use sugar, but Canderel, which works out at 10 g per 100 g sugar, in terms of sweetness, 
so I’d need 33 g for 90 biscuits, or more, or less, if I wanted to vary the sweetness; the chocolate 
chips might pose a problem as well. I could go on, but all four of these public domain tasks are 
patently ridiculous, which I’m sure you can see for yourself (unless you’re one of the authors 
of these books or examinations). 

So, as with the SMP 11-16 books, the public domain is composed of fictitious illustrations 
and in no way ‘real’ in the sense of presenting possible practical uses of mathematics, which 
claim is a lie! Is this ethical? 
 

*** 
Here’s another challenge: is it ethical to condemn an educational programme without offering 
or at least hinting at a solution? If the answer is ‘no’, then I’ve been writing and speaking 
unethically for pretty much my entire academic career (not to mention my school teaching 
before that). Indeed, the possibility of a solution, of a route to an ethical education, is 
suggested in Figure 2 above and in the analyses of schooling that are driven by it. First, I have 
to announce that this relational space originally derived from a combination of an analysis of 
school mathematics texts that led to the generation of the ‘theory’ that is constituted in Figure 
2 in an essentially Grounded Theory approach: the ‘theory’ was not imposed on the data but 
was built up from it. Of course, it also responded to my own ‘theoretical sensitivity’ (Glaser, 
1978) and the comments of my doctoral supervisor, Basil Bernstein. My theoretical sensitivity 
included a familiarity with structural linguistics, which encouraged the analytic division of the 
linguistic sign into the categories, ‘expression’ and ‘content’ (Hjelmslev, 1970, and, originally, 
signifier/signified in Saussure, 1911) as well as, of course, the sociology of Basil Bernstein (for 
example, 1971), though I eventually reconceptualised his concept, ‘classification’ as strength 
of institutionalisation that does the work of both ‘classification’ and ‘framing’ (see Dowling, 
1998). My ‘theory’, which I refer to as a ‘method’, including the relational space in Figure 2 has 
been productively deployed in a wide range of settings. If it is reasonable to suppose that every 
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activity that is recognisable as distinct, is so by virtue of its practitioners having constructed an 
esoteric domain, then the scheme in Figure 2 plausibly describes all stable activities. 

So, the problems with mathematics education that I have revealed here and elsewhere 
are related to the prevalence of its esoteric domain or the hybrid domains that are constituted 
by an amalgam with pedagogic or assessment theory. In each case, the operational esoteric 
domain, in its singular or hybrid forms, regulates the practice. In Dowling, 2010, I made a 
distinction between fetch and push strategies operated by the gaze of the subject of the 
esoteric domain—in the case of mathematics education, a teacher or the author of a textbook 
or examination question. A fetch strategy might be thought of as collecting material from 
another activity and reorganising it according to the principles of the fetching esoteric domain. 
A push strategy projects the result of such reorganising back into the other activity. Whilst this 
might be described as ‘mathematical modelling’, in the case of a mathematics esoteric domain, 
it is, as I have illustrated, a distortion, a recontextualisation of the original source activity and 
this is why the public domain illustrations in this article look so comical, pretending to be what 
they patently are not! Comedy is not an necessary feature of recontextualization, but 
distortion is. I am suggesting that this scheme is not limited to mathematics education, but 
might be applied to any stable activity, independently of the culture that it is addressing. This 
is a plausible suggestion because the dimensions, ‘expression’ and ‘content’ and the concepts 
of the relational space are defined at a high level of etic abstraction and not tied to any emic 
categories. 

I am not asserting that this is the way things really are, because I am not working in a 
naïvely realist epistemology, but simply offering an invitation: suppose you look at it like this, 
what follows? 

Well then, if the esoteric domain of any activity structures the analysis produced by the 
fetch and push actions of the gaze of its subject, then this domain must be located in the 
activity that generates the original problem to be solved. Social problems—police action 
structured along race lines, social and health problems associated with alcohol consumption, 
Educational success distributed ethnically—are often revealed in their extent by quantitative 
research and statistical analysis. This is recognised, but this kind of research on its own cannot 
tell you what’s going on, what is causing the statistics to come out as they do and what 
individual variations do they conceal. What is needed is a shift away from the prevalence of 
quantification, from mathematical domination. The three social problems that I’ve listed here 
will benefit from qualitative research that gets close to the action where the problems may 
become visible at a micro level. It is at this level they must be addressed and potentially solved. 
The move to counting should not be initiated until we know exactly what it is that we want to 
count and the complexity of our structure of variables should be understood qualitatively 
before we start to enumerate, because counting effaces the respective individualities of the 
items that are counted. 

Furthermore, the terrain—the chronotope—over which the problem in focus extends 
will consist of diverse contexts and the precise nature of the problem will vary accordingly. The 
conditions that are responsible will also vary with the context and so solutions will, of necessity, 
be local as well. It may be that a solution in one context will suggest solutions in contexts that 
are similar in some way, but these solutions will need to be explored and, if necessary tested, 
also at the micro level. 

The problem of the racially structured profile of examination outcomes that was 
presented to me by the staff at my South African host university suggested that quantification 
had taken place. My response, what in their practice might be responsible for this? would seem 
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to require a qualitative analysis of the practice, perhaps an ethnographically-inspired study, 
not only to get in close to this practice, but because students are not exclusively defined as 
African South Africans, indeed, one might imagine that the range of variables that this 
descriptor effaces is extensive indeed; the human genome, for example, consists of 2.0-2.5.104

 

genes7, not to mention individual and group cultural variations. In general, though, any analysis 
will have been produced by a methodological technology, we should be asking, what is it about 
this technology that has produced the results that we are presented with. Because we are 
presented with a public domain narrative that has been pushed from an esoteric domain that 
is alienated from the context of our concern—social injustice, perhaps, not mathematics, as 
such. The narrative is not only a distortion of this context, but the esoteric domain itself may 
be suffering from a ‘bug’. 

This conclusion reinstates the importance of the study and development of 
mathematics—the discipline under consideration—and also insists on the dismantling of 
public domain recontextualisations that misunderstand the settings into which they are 
pushed. If you want to study/teach mathematics, then do that, because it’s a worthwhile area 
of study. If you want to address social injustice, then start there and recruit from the disciplines 
where appropriate. This is precisely the strategy of Annemarie Mol and John Law in their 
‘topological’ study of anaemia: 

 
We have taken the notion of 'topology' from mathematics, and, in the process of bringing it to 
social theory, we have necessarily also altered it. 

Mol & Law, 1994; 643 
 

Mol and Law’s study deploys a mathematical concept—topology—in describing space in 
different ways, as regions, networks and as flows, but their research is qualitative, based on 
interview and observation data. The focus of their study—anaemia—transforms as we move 
between topologies: their ontology is fluid as is their ‘flow’ topological space and as, indeed, 
is the mathematics that they recontextualise. 

In an article that is referenced as ‘forthcoming’ in Mol &. Law’s paper, but, of course, is 
by now available, Mol, this time writing with Marc Berg, reports on a study involving an analysis 
of medical textbooks and observation and interviews with medical practitioners in the 
Netherlands, they conclude that: 

 
Using personal hemoglobin [sic] standards, and working with standards based on population 
statistics, gives the same results in many but not all patients. Some patients will be diagnosed as 
anemic according to one logic and not according to the other. And the clinical detection of anemics 
implies a different organization of health care than that suggested by the need to find all statistical 
deviants. 

Mol & Berg, 1994; 259 
 
The use of statistics that is referred to here defines the critical concentration of Hb as two 
standard deviations below the mean. If the distribution is normal (which it is presumed to be) 
then 95% of the population will have Hb levels above this. Mol and Berg’s article, however, 
argues that this is only one of a number of logics used to determine anaemia. There are 
different logics and so different anaemias. The potential for confusion here is annulled by the 
distinction, commonly made in medicine, between ‘pure’ principles and practice, which can 
reasonably be expected to be contaminated by technical errors and social interests etc. Even 

 
7 https://medlineplus.gov/genetics/understanding/basics/gene/ 
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sticking with the ‘pure’, however, the cut-off point is a statistical arbitrary, an artefact of 
esoteric domain mathematics, which recontextualises the lives of individuals who may or may 
not be suffering from anaemia. Again, Mol and Berg’s qualitative study reveals not only the 
mathematical distortion, but also the hybrid nature of medical knowledge that sustains the co-
existence of multiple logics. 

Social problems, and the global variation in the incidence and in the construction of 
anaemia is certainly one of these as Mol and Law’s article illustrates, are locally visible in the 
experience, in the narratives of the individuals who suffer them and in the actions of the 
individuals who are responsible for them as well as those who are attempting to remediate 
them. If this is what we want to address, then we must begin with these experiences and 
actions; tricky, eh? Much easier to start with a nice, simple survey and SPSS and certainly much 
easier to put in a textbook or an examination question, but is this ethical? 

 
*** 
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